Name:	Hour
Relativity Notes	weird stuff!
Up until 1905 the laws of motion were based	
Newton's Laws (inertia, F=ma, action/reactio	n) work, but only atspeeds.
	ecial Relativity- At the speed of light: Length time slows to a stop, and mass can be converted blished in 1915)
The speed of light (c) in a vacuum will always Ultimate speed !	s =m/smiles/s
<u>Cool Stuff Einstein Predicted:</u> To an observer: 1) At the speed of light, time	
If you could travel at the speed of ligh	nt, you would appear to age slower
2) At the speed of light, length	
3) At the speed of light, mass	
Has this stuff been proven? Yes! In laboratories such as Fermilab, ju	ust outside of Chicago, scientists can accelerate
	light. These fast-moving particles decay
and their masses have been	found to1000's of times!
Einstein's Most Famous Equation:	Remember: K.E. =
You can continually apply to	an object, but there is a limit on, so
therefore the of an object must i	ncrease! and are
equivalent. Or: When you add energy to an	object, it's the same as adding mass
1 gram of matter has more energy contained	I in it than is used to power Minneapolis for 1 day!
THE LAST EQUATION OF THE YEAR:	F _
	E = m =
	c =

c =

How much energy is contained in a penny with a mass of 4 grams?

- 1. The sun loses 3.92×10^{26} J of energy every second as sunlight. How much mass does it lose every second? (4.36×10^9 kg)
- Imagine you could turn a jar of baby food (46 g) into pure energy.
 a. How much energy would it contain? (4.14 x 10¹⁵ J)
 - b. How long would it power a 100 Watt light bulb in **years**? (Use $P = W / \Delta t$) Remember: Work=energy (Energy is just the ability to do work) (1,312,785 years!)

Einstein Article: Relativity Explanation: https://www.youtube.com/watch?v=wteiuxyqtoM 1. Briefly describe the 3rd and 4th papers Einstein published in 1905.

3rd:

4th:

- 2. Briefly describe Einstein's General Theory of Relativity. (1915)
- 3. List 2 things you learned about Einstein that you didn't already know.

Einstein's Gravitational Waves detected...

- 1. What is a gravitation wave?
- 2. Where did the gravitational waves that have been discovered come from?
- 3. What did the colliding black holes do to spacetime?
- When did Einstein first propose the existence of gravitational waves?